
J .  Fluid Mech. (1992), vol. 243, p p .  353-392 
Printed in Great Britain 

353 

The three-dimensional structure of periodic 
vorticity layers under non-symmetric conditions 

By OMAR M. KNIOT AND AHMED F. GHONIEM 
Department of Mechanical Engineering, Massachusetts Institute of Technology, 

Cambridge, MA 02139, USA 

(Received 20 July 1990 and in revised form 27 March 1992) 

Numerical simulations of a three-dimensional temporally growing shear layer are 
obtained at high Reynolds number and zero Froude number using a vortex scheme 
modified for a variable-density flow. Attention is focused on the effect of initial 
vorticity and density distributions on the interaction between instability modes 
which lead to the generation and intensification of streamwise vorticity. Results 
show that the three-dimensional instabilities evolve following the formation of 
concentrated spanwise vorticity cores. The deformation of each core along its span 
resembles the amplification of the translative instability. The generation of vortex 
rods, which wrap around individual cores while stretching between neighbouring 
cores, suggest a mode similar to the Corcos instability. The instability modes leading 
to the formation of both structures, energized by the extensional strain generated by 
the cores, grow simultaneously. A similar series of events occurs in variable-density 
shear layers and in shear layers which start with an asymmetric vorticity 
distribution. Baroclinic vorticity generation in the variable-density layer leads to the 
formation of asymmetric cores whose volumetric composition is biased towards the 
lighter fluid. The structures are propelled, by their asymmetric vorticity distribution, 
in the direction of the heavier stream while their eccentric spinning forces an uneven 
stretching of the vortex rods. The origin of the asymmetry is established by 
comparing these with the results of a shear layer with an initially asymmetric 
vorticity distribution in a uniform-density flow. The strong late-stage asymmetry 
exhibited by the former is not observed in the latter. Thus, baroclinic vorticity 
generation is responsible for the observed symmetry. We also find that initially 
asymmetric vorticity distribution does not, as suggested before, lead to asymmetric 
spacing between the streamwise rods. it is concluded that the experimentally 
observed asymmetric spacing must arise after pairing. 

1. Introduction 
The formation of large vortical structures has long been observed in free shear 

layers at  high Reynolds numbers (Crow & Champagne 1970; Brown & Roshko 1974). 
Analysis of experimental results shows that the evolution of these structures and 
their mutual interactions, governed essentially by inviscid flow dynamics, play an 
important role in the growth of the layer, the distribution of turbulen't statistics, 
scalar transport and mixing (Winant & Browand 1974; Ho & Huerre 1984; 
Dimotakis 1989; Hussain 1986). Without external forcing, the early stages of the 
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layer are dominated by two-dimensional motion, where spanwise vortex structures 
are formed, followed by a transition to  three-dimensional motion. Within and after 
the transition region, the spanwise vortices are deformed, and secondary streamwise 
vortices are generated (Konrad 1976; Breidenthal 1981 ; Jimenez 1983; Bernall981). 
Experimental investigations yielded striking visualizations of the streamwise 
structures, and how they modify scalar transport (Jimenez, Cogollos & Bernal 1985 ; 
Bernal & Roshko 1986). I n  recent work, Lasheras, Cho & Maxworthy (1986) and 
Lasheras & Choi (1988) examined the possibility of manipulating the location of the 
‘transition ’ region by three-dimensional forcing (see also Breidenthal 1980), thereby 
emphasizing the practical aspect of such studies. 

The three-dimensional response of vorticity layers is complex and determining the 
origin and shape of the secondary structures poses considerable difficulties to  
analytical studies. So far, a limited number of theoretical investigations have dealt 
with this problem. Pierrehumbert & Widnall (1982) used a periodic array of Stuart 
vortices to represent the spanwise eddies formed by the roll-up of the Kelvin- 
Helmholtz instability. The linear stability analysis of this configuration revealed 
the presence of a ‘ translative ’ instability, which was then proposed as a possible 
mechanism leading to the formation of the observed secondary vortices in shear 
layers. Another mechanism, discovered by Corcos & Lin (1984) in their study of the 
stability of the layer by linearizing three-dimensional perturbations around the 
evolving two-dimensional flow (Lin & Corcos 1984), was also suggested. They showed 
that, for sufficiently low diffusion (Neu 1984), the strained streamwise vorticity is 
unstable, and the instability causes the redistribution of the latter into round, 
concentrated vortex rods. These streamwise rods lead to the generation of 
‘mushroom ’ structures similar to those experimentally observed (Bernal & Roshko 
1986; Lasheras et al. 1986; Lasheras & Choi 1988). Manifestation of both instability 
mechanisms has been reported in experimental studies ; however, the broadband 
nature of the three-dimensional modes predicted in both theories complicates the 
task of verifying their validity or determining flow conditions under which one mode 
dominates the other. 

The three-dimensional motion of shear layers has also been the subject of 
numerical investigations. Ashurst & Meiburg (1988) used a vortex filament scheme 
to compute the development of a temporal shear layer a t  high Reynolds number. The 
shear layer was modelled by a single desingularized vortex sheet or two vortex sheets 
of opposite sign. Results of both models showed evidence of both the translative and 
the Corcos instability modes. When two sheets of opposite sign were used, an 
asymmetric distribution of streamwise vortices (Lasheras & Choi 1988), was 
apparently reached through a nonlinear interaction between two counter-rotating 
streamwise vortex rods, each originating in a distinct vorticity layer. While a similar 
asymmetric distribution of vortices was observed experimentally in shear layers, the 
initial vorticity profile used in this simulation was more representative of that of a 
wake. The difference between the stability and long-time behaviour of wakes and 
shear layers would be seen by comparing the results of Ashurst & Meiburg and of 
Grinstein, Hussain & Oran (1989), who used a finite-difference scheme to simulate the 
evolution of a spatially developing shear layer a t  moderate Reynolds number. 
Results of the latter indicate that the asymmetric distribution of streamwise vortices 
develops as a result of the merging of pairs of streamwise rods of the same sign of 
circulation, and that this interaction only occurs after pairing between neighbouring 
spanwise eddies. 

The ‘sequential’ nature of the growth of several forms of two- and three- 
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dimensional instabilities was investigated in the spectral calculations of Metcalfe 
et al. (1987). They considered temporal vorticity layers at  low Reynolds number, and 
performed a detailed study of the energy content of the distinct modes. Their results 
show that, for small perturbations, two-dimensional Kelvin-Helmholtz waves grow 
first. During their growth, three-dimensional activity is suppressed and the layer 
maintains a two-dimensional character. Following the nonlinear growth of the 
Kelvin-Helmholtz waves and the formation of (‘primary ’) spanwise eddies, three- 
dimensional perturbations are amplified. Saturation of the Kelvin-Helmholtz and 
three-dimensional instabilities is reached soon after the flattening of the (primary) 
spanwise cores and the ‘maturation ’ of three-dimensional modes. They also show 
that pairing of spanwise cores, during which three-dimensional activity is suppressed, 
is necessary for further growth of the layer. Following pairing, the growth of three- 
dimensional modes is resumed. Amplification of three-dimensional disturbances is 
thus restricted to windows separating periods of otherwise two-dimensional growth. 

The dependence of the response of the shear layer on initial conditions and forcing 
levels was investigated by Inoue (1989), who performed a vortex filament simulation 
of a spatially developing layer modelled by a single vortex sheet. His results show 
that the three-dimensional transition strongly depends on three-dimensional forcing, 
and that the flow field tends towards two-dimensional behaviour once this forcing is 
interrupted. This was contradicted by the numerical experiments of Grinstein et al. 
(1989) which indicate that the transition to three-dimensional motion persists 
despite the absence of a continuous forcing function. This result was verified in the 
simulations of Lowery, Reynolds & Mansour (1987), who employed a hybrid finite 
difference - spectral method to track the evolution of a passive scalar in a developing 
layer at  low Reynolds number. While the study focused on asymmetric entrainment 
patterns in two and three dimensions (Dimotakis 1989, 1986), it also emphasized the 
fact that distributions of spanwise and streamwise vorticity are weakly dependent on 
the strength and shape of the forcing function. As indicated below, vortex 
simulations, similar to those of Inoue (1989) and Ashurst & Meiburg (1988), which 
do not allow the number of computational elements to increase as the material 
elements are stretched, may lose accuracy and contaminate the computations with 
numerical diffusion errors. 

Despite these efforts, a clear and unified interpretation of the role of the various 
modes in the formation of vortical and scalar structures, a crucial step towards a 
better understanding of three-dimensional transition, has not been reached. 
Moreover, several important issues, summarized next, cast some doubt on the 
conclusions of these simulations. Using desingularized vortex sheets to model shear 
layers, as in Ashurst & Meiburg (1989), may lead to spurious results since, as shown 
by the detailed numerical study of Knio & Ghoniem (1991), the properties of the 
three-dimensional modes of a vortex structure are strongly dependent on the 
vorticity distribution within the cross-section of the structure. The use of vortex 
filaments to resolve vorticity within the shear layer is not recommended since the 
corresponding schemes, although accurate for short times, do not maintain their 
accuracy as vortex elements tend to move apart due to stretching in the direction 
normal to that of the main flow. This violates an important accuracy condition in 
vortex methods, namely that the cores of neighbouring vortex elements must, at  all 
times, overlap. 

Another source of inaccuracy in the simulations presented in Ashurst & Meiburg 
(1988) is the enforcement of the periodic boundary conditions. A small number of 
images was used on either side of the computational domain, which was not enough 
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to capture the correct value of the free-stream velocity. On the other hand, the 
conclusions of the spectral simulations of Metcalfe et al. (1987), particularly those 
concerning the onset of and the interaction between the two- and three-dimensional 
modes described above, may be dependent on some diffusive-convective balance 
achieved only at low Reynolds number. This balance, which is a function of the 
Reynolds number, can lead to an early saturation of the instability. We believe that 
a high-Reynolds-number simulation is necessary to determine whether the 
interaction between the different modes of the three-dimensional instability is, as 
widely suspected, an essentially inviscid mechanism. 

The large number of mechanisms governing the evolution of shear layers, and the 
complexity of the resulting vortical and scalar structures underscore the need for 
accurate numerical methods which can carefully treat the vorticity transport 
equation. Successful implementation of numerical schemes depends on the proper 
account of the vorticity stretching term, and, if present, vorticity source terms. 
Another crucial ingredient lies in the ability of the method to accommodate the large 
strain associated with high concentrations of vorticity. The latter have been shown 
to result in the deterioration of the discretization accuracy in both Eulerian 
computations, through the creation of small-scale structures which may not be well 
represented on a grid of fixed mesh size and the accumulation of numerical diffusion 
which may dissipate these structures at their early stages, and Lagrangian 
computations where zones of high strain may be depleted of computational elements. 
Finally, questions regarding the dynamic effect of density gradients, in the absence 
of gravity, which impact mixing of gases a t  different molecular weight and/or 
density, have not been tackled before. 

In  this work, an adaptive, Lagrangian numerical scheme is used in the simulation 
of vorticity layers. Two main ingredients are incorporated in the construction of the 
scheme, which was analysed in our previous effort (Knio & Ghoniem 1991). The first 
relates to its adaptive nature, a feature which avoids the loss of spatial resolution and 
allows the accommodation of high strain rates by increasing the number of 
computational elements as the flow evolves. The second, a property found in most 
Lagrangian methods, consists of ensuring a minimal effect of numerical diffusion 
which may lead to excessive smearing of the vorticity. We also apply a vortex 
scheme extended to  variable-density flows to analyse the dynamic effect of finite 
density gradients on the evolution of the shear layer. 

Computed results are used to accurately portray the severe deformation of the flow 
map and the evolution of the flow vorticity. We focus on the relationship between the 
deformation of material surfaces, the generation and intensitification of vorticity and 
the associated scalar entrainment patterns. The results are used to  characterize the 
three-dimensional instabilities of the vorticity layer. Instability modes leading to the 
generation of streamwise vortex rods joining neighbouring eddies are identified and 
distinguished from those affecting the vortex cores. A generalized perspective of the 
latter is given; the similarity between vorticity patterns found in the late stages of 
spanwise vortex cores in the shear layer and those observed in the development of 
vortex rings is discussed. Finally, we investigate some of the mechanisms leading to 
the onset of asymmetry in an otherwise symmetric flow. In  particular, a variable- 
density layer is contrasted with a uniform-density asymmetric layer, in order to 
study the roles of density variation and asymmetric strain field on the development 
of the vorticity field. 

The numerical scheme used in the computations is summarized in $2. I n  $ 3  we 
review the evolution of a uniform-density symmetric layer, then present results of 
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variable-density and asymmetric vorticity layer computations. The results are 
further discussed in $4; concluding remarks are given in $5.  

2. Formulation and numerical scheme 
2.1. Formulation and governing equations 

We start with the incompressible, isentropic, variable-density form of the governing 
equations in the low-Mach-number limit (Rehm & Baum 1978; Majda & Sethian 
1987; Ghoniem & Krishnan 1989). By choosing an appropriate combination of 
characteristic length, time and velocity scales as normalizing parameters, these 
equations are written as 

- 0, _ -  DP 
Dt 

Du 
Dt 

p- = - v p ,  

where x = (z,y,z) is the position vector, u = (u,v,zu) is the velocity, t is time, 
V = (a/ax, a&, a/&) is the gradient operator, and D/Dt  = a /a t  + u-Vu is the material 
derivative. Since the pressure and  density variations are decoupled, we can 
supplement (1) and (2) with 

v - u  = 0.  (3) 
By taking the curl of (2) and using the solenoidality condition, (3), we get the 

vorticity transport equation : 

-- Do - w . v u + , x v p ,  VP 
Dt P 

where o = V x u is vorticity. A more suitable form of the vorticity 
equation is derived by substituting ( 2 )  for V p  into (4), thus yielding 

Do V p  Du -- - 0-vu--x---. 
Dt P Dt 

(4) 

transport 

(5) 

The vorticity associated with a material particle changes due to tilting and 
stretching under the action of the strain, Vu, and due to the particle acceleration in 
a non-uniform density field. Equation ( 5 )  is preferred over (4) because the baroclinic 
source term is written in terms of the kinematics of the flow field rather than being 
treated as a dynamic effect associated with pressure forces. Buoyancy effects have 
been neglected in the vorticity transport equation since we intend to focus on high- 
speed flows in which fluid acceleration is much larger than gravitational acceleration. 
Under these conditions, gravity effects are negligible whenever the Richardson 
number. 

written in terms of the gravity constant, 9, and characteristic density po, length Al, 
density difference Ap, and velocity difference U,  is small (Koop & Browand 1979). 

The presence of the baroclinic source term requires the accurate estimation of the 
density gradient. To this end, we derive a transport equation for the scalar gradient 
(the density in this case), by taking the gradient of (1) to obtain 

_-  D g - - g . v u - g x w ,  
Dt (7) 
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where g = Wp. Thus, while density remains constant along a material path, its 
gradient is affected by the local strain and the vorticity. Working with (7) instead of 
( 1 )  is similar to using the vorticity transport equation in place of the momentum 
equation. Both substitutions are motivated by the observation that, in most high- 
Reynolds-number flows, the supports of the vorticity and scalar gradient are small 
subsets of the supports of the primitive variables. Thus, computational effort is 
concentrated into smaller regions of the domain of study, and the numerical 
differentiation of the density field is avoided, thereby minimizing a loss of resolution. 

2.2 .  Numerical scheme 

The transport element method is used to compute the evolution of the shear layer. 
The numerical scheme solves the time-dependent, inviscid, incompressible, vorticity, 
scalar and scalar gradient transport equations given above. Variants of the 
numerical scheme which accommodate gravity, compressibility, chemical reactions 
and diffusion have been extensively used in two dimensions (Ghoniem & Krishnan 
1988), and in a limited number of applications in three-dimensions (Knio & Ghoniem 
1992), but will not be required in this study. 

The numerical method is the product of the combination of a series of refinements 
of three-dimensional vortex methods with the scalar transport techniques developed 
in the two-dimensional transport element method (Ghoniem, Heidarinejad & 
Krishnan 1988). It is based on the discretization of the vorticity and scalar gradient 
fields into a finite number of Lagrangian elements, called transport elements. 
Transport elements carry discrete scalar, vorticity and scalar gradient values, and 
are distributed along elementary rectangular areas which are used to  divide entire 
material surfaces. The Lagrangian mesh defines the location of the elements, while 
vector quantities are not restricted to lie within elementary rectangular areas. 
Discrete quantities are smoothed in a small spherical neighbourhood of the centre of 
the element. A third-order Gaussian core function, +8 = 3/(47cS3) exp ( -r3/S3), is 
used as smoothing function, and its standard deviation 6 is used as characteristic core 
radius (Knio & Ghoniem 1991). This yields a continuous version of the vorticity field 
which induces a desingularized velocity field, expressed in terms of the Biot-Savart 
law (Batchelor 1967). The material surfaces are tracked by moving the vertices of the 
elements with the local velocity vector, using a second-order, predictor-corrector 
time-integration scheme. 

The construction of the transport element method closely mimics conventional 
vortex elements schemes. Numerical analysis of these schemes reveals that the 
smoothing functions control the order of the spatial resolution and that strong 
overlap among the cores of neighbouring elements is required to guarantee 
convergence (Beale & Majda 1982a, b ;  Beale 1986). While the third-order Gaussian 
functions have been shown to yield second-order schemes (Leonard 1985; Beale & 
Majda 1985), it is the overlap condition that first motivated the modification of the 
three-dimensional vortex method, in which vortex elements are distributed along 
vortex tubes. In  vortex methods and vortex filament methods, vortex elements are 
redistributed along vortex tubes whenever the strain causes the separation distance 
between neighbouring elements to exceed the core radius. However, the overlap 
condition cannot be enforced if the elements (or filaments) are strained in a direction 
normal to the local vorticity vector. As a result, deterioration in the spatial 
resolution may occur a t  long times as large discretization errors pollute the solution. 
I n  the present computations, a scheme of local mesh refinement which subdivides 
computational elements along two directions of strain is employed. This scheme, 
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which is described below, has been shown to yield significant improvement in the 
accuracy of the computations over vortex element computations (Knio 8z Ghoniem 
1991). 

Another advantage of the transport element method lies in the fact that tracking 
material surfaces greatly simplifies the task of integrating the equation of motion of 
the density gradient. This is achieved by associating which each transport element 
an elementary surface area SA,(t) and a unit normal to the surface areas a t  the centre 
of the element n,(t) = GA,(t)/lSA,(t)l. In the computations, this is done by requiring 
that material surfaces effectively constitute iso-scalar surfaces, and adopting linear 
interpolation functions to describe the shape of the material surface within each 
transport element. We take advantage of kinematical relationships which relate the 
evolution of the gradient of a non-diffusive scalar in an incompressible fluid at  a 
material point X( t ) ,g ( t , x ) ,  to that of an elementary surface area centred around 
x,SA( t ,  x), initially having the same sense and direction as g .  This relationship, which 
constitutes the analogue of the Helmholtz vorticity theorem, may be expressed as : 
g( t ,  x) = olSA(t, x), where a = Ig(0, x)l/lSA(O, x) l .  In view of the preceding, we avoid 
integrating (7)  simply by following the evolution the elementary surface areas. 

The description of the method is completed by specifying a technique for updating 
the discrete values of vorticity associated with the transport elements. Two 
techniques are used in the computations. In the absence of density variation, direct 
integration of the vorticity transport equation is avoided. In this case, substantial 
computational savings are achieved by taking advantage of the Helmholtz and 
Kelvin theorems since vorticity lines, identified by their circulation, evolve as 
material lines. In this variant of the scheme, vorticity changes according to the 
stretching and tilting of elementary material segments lying in its direction, while 
the circulation associated with a transport element remains constant. This procedure 
avoids the evaluation of the velocity gradient, and retains the property of the 
conservation of the volume of vorticity possessed by vortex filament methods 
(Greengard 1986). 

When dealing with variable-density flows, we can no longer apply the Helmholtz 
vorticity theorem. Therefore, we are not able to avoid the integration of (5), and, in 
doing so, the evaluation of the velocity gradient. The procedure suggested here is to 
split that task in two fractional steps, by first numerically integrating 

D o  
Dt 
-- - o*vu 

and, in a second step, integrating 

Dw Vp Du 
X--. - = -- 

Dt P Dt 
(9) 

This procedure is similar to the ‘viscous splitting’ of the viscous vorticity transport 
equation (Chorin 1973), and thus may be termed ‘baroclinic splitting’ of the 
equation of motion. In the numerical integration of (8), Vu is found by analytically 
differentiating the desingularized Biot-Savart law, while the same predictor- 
corrector employed to advance the computational mesh is used to perform the 
time integration. Equation (9) is integrated in a single step, by estimating the baro- 
clinic torque from knowledge of (i) p,  which is constant for each element; (ii) V p ,  
which is computed according to the deformation of the elements; and (ii) Du/Dt,  
which is approximated by a first-order, backward finite difference in time, 
Du/Dt x (u(t )  - u(t - At)) /At .  
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I n  the nonlinear evolution of the flow field, a strong and rapid deformation of the 
Lagrangian computational mesh is experienced. This deformation causes the 
depletion of computational elements in some regions of the domain where the 
separation distance between neighbouring elements becomes excessively large. I n  
this work, we employ a local mesh refinement scheme which splits a transport 
element into two whenever the average value of opposing sides of the rectangles 
exceeds the value of the core radius. The scheme has been described in detail in Knio 
& Ghoniem (1991). It essentially ensures that core overlap among neighbouring 
elements is satisfied and amounts to  redistributing the vorticity and scalar fields into 
a larger number of elements due to  strong strain. 

2.3. Initial and boundary conditions 

A variable-density temporal vorticity layer of finite thickness is assumed at  t = 0. A 
right-handed rectangular coordinate system (x, y, z )  is chosen so that the initial 
vorticity distribution is aligned with the positive y-axis, the flow being uniform in the 
streamwise x-direction. A second-order Gaussian vorticity distribution with 
standard deviation u is adopted to  describe the variation of vorticity within the 
layer. The thickness of the vorticity layer, u, and the free-stream velocity are chosen 
as length and velocity scales. The initial vorticity and velocity field are given, 
respectively, by o J x ,  0) = 2/(m);exp ( -z2/u2), o,(x, 0) = w,(x, 0) = 0, v ( x ,  0) = erf 
(z/u), v(x,O) = w(x,O) = 0. For c = 1,  the velocity initial flow field satisfies: 
u(z + f 00)  = f 1. Furthermore, the layer is assumed periodic in the streamwise x- and 
spanwise y-directions, with periodicity lengths A, and A, respectively, and is 
unbounded in the cross-stream z-direction. The initial density distribution is an 
error-function profile, and the reference density scale is chosen so that the low- 
density fluid has p = 1. 

The periodicity boundary conditions introduce some difficulties in the evaluation 
of the flow field and of its gradient since we must consider the image system of the 
transport elements. This system yields an additional term which must be added to 
the velocity induced by the elements in the domain. Unlike the two-dimensional 
case, this term must not be deduced from a potential flow, and closed-form 
expressions to its effect are not known (Ashurst & Meiburg 1988). I n  the 
computations, we have adopted the procedure described in Knio & Ghoniem (1991), 
which consists of computing directly the effect of the eight immediate neighbours of 
the elements and approximating the induced velocity of the images which lie within 
a square of side 400A, by interpolation on a fixed grid. While previous studies have 
only included the contribution of a small number of images (Ashurst & Meiburg 
1988), the procedure suggested in Knio & Ghoniem (1991) is preferred because it 
yields more accurate representations of the velocity and velocity gradient fields, and 
avoids the generation of numerical boundary layers a t  the spanwise boundaries of the 
domain (Inoue 1989). 

3. Results 
In this section, we focus on the deformation of the primary (essentially two- 

dimensional) structure due to  the three-dimensional instabilities, and on the 
formation of secondary structures as these instabilities evolve into their nonlinear 
stages. We attempt to unify the various postulates on the origin and mechanisms of 
the three-dimensional motion. By comparing our results to  available experimental 
evidence (Breidenthal 1980, 1981 ; Jimenez 1983 ; Jiminez et al. 1985 ; Bernal 1981 ; 
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FIGURE 1 .  (a) Schematic representation of the shear layer, the coordinate axes, and the initial 
vorticity and scalar distributions, showing the shape of the perturbation, and the initial location 
of the vortex tubes. ( b )  Vorticity and velocity profiles for the symmetric and asymmetric layers 
discussed in Ss3.1 and 3.3 respectively. 

Lasheras & Choi 1988; Lasheras et al. 1986) and to numerical solutions (Ashurst & 
Meiburg 1988; Metcalfe et al. 1987; Lowery et al. 1987; Grinstein et al. 1989), we 
proceed to clarify some of the aforementioned issues, and point to strengths and 
deficiencies of previously proposed models. Another objective is to provide a base 
solution which, in turn, is used to highlight the baroclinic effects in the variable- 
density layer. 

3.1. Symmetric, uniform-density shear layer 
A temporal shear layer with streamwise periodicity length A, = 13.2, which matches 
the wavelength of the most unstable two-dimensional mode (Ghoniem & Krishnan 
1988) and spanwise periodicity length A, = ;A2, which lies close to the most amplified 
three-dimensional mode of the translative instability (Pierrehumbert & Widnall 
1982), was computed. The initial scalar distribution has a zero mean and a unit 
difference across the layer. The shear layer is initially discretized among elements 
distributed on a grid of 20 x 14 x 5 points along the z-, y - ,  and z-directions 
respectively. Thus, computational elements are distributed on five material or iso- 
scalar surfaces. The selection of the number of material surfaces is chosen as the 
minimum number required for accurate representation of the eigenfunctions of the 
Kelvin-Helmholtz instability (Ghoniem et al. 1988). The core radius of the smoothing 
functions is chosen so that strong overlap among the cores of neighbouring elements 
is ensured, and the vorticity of the elements is obtained by minimizing the integral 
error between assumed and discretized vorticity profiles (Knio & Ghoniem 1991). In  
the computations, we set 6 = 0.89 and the time step At = 0.1. The layer is initially 
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t = 4.0 

xv t = 8.0 

xv 
t = 12.0 

xv 
t = 16.0 

FIGURE 2. Three-dimensional perspective view of the surface s = 0, initially lying in the plane 
z = 0. The plots were generated from the point of view of an observer located at (48,24,48). 2 is the 
streomwise direction, y the spanwise direction, and z the cross-stream direction. 

perturbed in both the streamwise and spanwise directions by displacing the 
computational elements in the cross-stream direction using sinewaves of amplitude 
B = 0.02AZ, i.e. by using the transformation zi + zi + E sin (2xsi/AZ) + esin (2xy,/A,) 
(see figure 1. ) 

3.1.1. Deformation of material surfaces 
Figures 2 and 3 depict perspective views of the iso-scalar surfaces initially located 

a t  z = 0, and - 1.32 respectively. The surface initially lying at z = 0 represents the 
middle surface where most of the vorticity is concentrated, while increasing or 
decreasing the value of z corresponds to motion towards the top or bottom streams. 
The plots are generated from the point of view of an observer located at  (48,24,48). 

Owing to rollup of the layer, computational elements accumulate in the core which 
forms during 4.0 < t < 8.0. Previous analysis of the two-dimensional solution 
indicates that, for the present amplitude of the streamwise perturbation, the linear 
stages of the evolution of the primary two-dimensional instability end between 
t = 4.0 and 8.0, followed by rollup. The amplitude of the spanwise perturbation 
remains small for t < 8.0, i.e. its amplification is essentially suppressed during the 
growth of the two-dimensional mode. 

The growth of the eddy core in the mid-section of the domain continues while its 
spanwise waviness amplifies. The amplitude of the spanwise perturbation increases 

' 
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*v 
t = 8.0 

t = 8.0 

xv t = 16.0 

t = 16.0 
FIGURE 3. Three-dimensional perspective view of the iso-scalar surface (a) initially lying in the 
plane z = - 1.32, ( b )  embedded in the middle layer and coinciding with the axis of the spanwise 
core, and (c) embedded in the middle layer and located within the braids. The plots are generated 
as in figure 2. 

significantly along the core, an indication of the evolution of the translative 
instability (Pierrehumbert & Widnall 1982). This uneven axial displacement of the 
spanwise core is accompanied by an out-of phase deformation of the braids under the 
influence of the streamwise vorticity generated within the cores. The growth of the 
translative instability is shown in figure 3 (b)  by plotting the row of elements initially 
aligned along the core centerline. Vortex lines aligned with the axis of the spanwise 
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FIGURE 4. Intersection of the Lagrangian mesh at t = 18.0 with the planes (a) y = 3.3, ( b )  y = 1.6, 
(c) z = 6.6, and (d )  r = 2.0. The intersection points are illustrated in terms of small circles whose 
radius is + of the core radius of the transport elements. 

t = 4.0 
Material z 

layer location A N 

1 - 1.32 1.03 1.00 
2 -0.66 1.04 1.00 
3 0 1.04 1.00 
4 0.66 1.04 1.00 
5 1.32 1.03 1.00 

t = 8.0 t = 12.0 t = 16.0 

A A’ A N A N 

1.12 1.20 1.62 1.68 3.26 3.80 
1.22 1.33 2.31 2.54 4.79 7.05 
1.43 1.49 2.71 3.24 5.41 9.53 
1.22 1.33 2.31 2.54 4.79 7.05 
1.12 1.20 1.62 1.68 3.26 3.80 

TABLE 1 .  Normalized surface area, A ,  and number of elements, N ,  for the individual material layers 

core suffer a mild net deformation in the streamwise direction. The evolution of the 
spanwise core instability occurs such that vortex lines constantly realign with the 
direction strain while being stretched along their axial direction. 

The fluid motion along the braids is illustrated in figure 3 (c). The stretching of the 
braids leads to  the intensification of streamwise vorticity produced as the braids are 
deformed by the growth of the ‘translative’ instability along the core, and strained 
by the two-dimensional flow field. Vortex rods, which extend throughout the braids 
and are wrapped around the spanwise cores, form as streamwise vorticity rolls into 
coherent eddies. The material surfaces spin around the streamwise axes of these 
eddies, which are located at  the streamwise boundaries and middle of the domain. 
This motion is accompanied by the thinning of the strip in the region separating 
neighbouring streamwise vortices, thus producing a ‘ hairpin ’ vortex configuration. 
The resulting deformation of the flow map is captured by the mesh refinement 
algorithm which can also be observed in the surface plots. Since the flow is inviscid, 



Three-dimensional structure of periodic vorticity layers 

Downwash 

365 

Upkash 

FIGURE 5. Schematic illustration of the evolution of the scalar distribution in the streamwise plane 
dividing the spanwise eddy core. The dashed rectangles show where the core leaves the plane of the 
figure: 1 ,  outwards; 2, inwards. 

the division and change of shape of the transport elements describes the strain field, 
especially when the elements approach the spanwise core or when they are attracted 
towards the axes of the vortex rods. 

The adaptive response of the numerical scheme is illustrated in table 1 where the 
surface area, A ,  and of the number of elements, N ,  used along individual material 
surfaces are given. While both grow rapidly following the rollup of the vorticity 
layer, the increase in the number of transport elements occurs at a higher rate than 
that of the surface. Though the middle surface deforms at  higher rate and carries a 
larger number of transport elements than the remaining surfaces, small zones of high 
strain exist along all material surfaces. These zones necessitate the introduction of 
new elements, an effect which precedes the severe deformation of the surfaces. 

Figure 4 shows cross-sections through all the material (computational) surfaces at 
the time the computations are stopped, t = 18.0. (As indicated below, the structure 
of the flow field does not vary appreciably for t 3 16 due to saturation of the 
instabilities. This additional frame is provided to emphasize this feature of the 
computed flow; the subsequent discussion will be limited to results obtained for 
t < 16). We take streamwise cross-sections through the braid and core in the planes 
located at x = 2 . 0 ( d )  and x = 6.6(c), respectively, and spanwise sections along the 
planes y = 1.6(b) and y = 3.3(a).  Small circles, whose radii are chosen smaller than 
the core radius, are drawn to mark the intersection points with the transport 
elements. The streamwise sections, (c )  and ( d ) ,  show how the streamwise rods, 
resulting from the rollup of the braids, give rise to the formation of the mushroom 
structures (Bernal & Roshko 1986; Lasheras et al. 1986; Lasheras & Choi 1988). They 
also depict how the extension of these rods around the spanwise cores results in the 
establishment of a double mushroom structure (Lasheras & Choi 1988). The results 
show that the deformation of the material surfaces within the core is due to the 
combined effect of three rows of streamwise vortex structures: two rows resulting 
from the extension of vortex rods towards the core, and a third generated by the 
deformation of the core itself under the action of the translative instability. This is 
shown schematically in figure 5 .  

The spanwise sections illustrate the effect of the translative instability on the 
cross-stream position of the core and the shape of its cross-section. Figure 4 shows 
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FIGURE 6 ( a ) .  For caption see facing page. 

t = 16.0 

that the core is pushed upwards and in the flow direction of the top stream in the 
‘left ’ half of the domain, 0 < y < ;Av, while it suffers an antisymmetric deformation 
in the other half, as can be seen in figures 2 and 3. The core loses its symmetry at most 
spanwise stations, as computational elements migrate in the direction opposite to 
that of the core translation. The distribution of material particles in the plane 
y = 3.3, which intersects the central streamwise vortex rod, shows that the braids 
significantly thicken a t  this critical spanwise location by entraining irrotational fluid 
from one side of the layer to the other. This is verified by simultaneously examining 
the streamwise cut through the plane x = 6.6, which illustrates the entrainment of 
the mushrooms around the spanwise core. 

3.1.2. Vorticity and scalar distributions 

The motion of the material surfaces follows the evolution of the vorticity field. 
This motion establishes entrainment patterns within the shear layer. Both are 
displayed in figures 6-9 in the form of vorticity and scalar contours plotted, 
respectively on two spanwise sections, y = 3.3 and 5.0, and on two streamwise 
sections, x = 2.0 and 6.6. The vorticity and scalar contours, generated using different 
techniques, are generated at times t = 4.0, 8.0, 12.0, and 16.0. Vorticity contours are 
generated by using the core smoothing functions to  compute the vorticity on a mesh 
of 40 x 40 points and processing the data with the NCAR contouring software. A 
considerable amount of smoothing is introduced in this procedure, and the resulting 
plots are mainly used to deduce the large-scale features of the vorticity field. A 
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t = 16.0 
FIQURE 6. (a) Contours of constant spanwise vorticity, wy, and (b )  iso-scalar contours 

plotted in the plane y = 3.3. 

different approach, in which shaded areas of constant scalar concentration are 
generated by interpolating the discrete scalar values on a 135 x 135-cells grid, is 
adopted in the representation of scalar distribution. 

( a )  Early stages of the three-dimensional motion 
At early stages, and until t = 8.0, the vorticity and scalar contours plotted at 

various spanwise sections are similar, indicating that the growth of the three- 
dimensional perturbations is suppressed during the early stages of the two- 
dimensional instability and that the spanwise vorticity remains essentially uniform 
across the layer (Metcalfe et al. 1987). Weak streamwise structures which change 
their form between different streamwise stations develop, but have not yet gained 
enough strength to alter the flow significantly. Meanwhile, a single row of counter- 
rotating vortices is found to repeat itself at all streamwise locations of the domain. 
These structures are generated by tilting of the vortex lines which, at t = 0,  do not 
possess a streamwise vorticity component. The tilting of the vortex lines into the 
streamwise direction(s) leads to the creation of zones of alternating streamwise 
vorticity whose locations and signs follow the shape of sinewave perturbation. For 
t > 4, the streamwise vorticity is lowly intensified under the two-dimensional strain 
field, producing higher values in the braids of the eddy. With the rollup of the 
vorticity layer and the formation of a spanwise core, the edges of the core are 
stretched up and down towards the free streams, giving rise to the top and bottom 
rows of counter-rotating vortices which appear in figure 8(a) .  These two rows are 
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FIGURE 7 (a). For caption see facing page. 

separated by a third, which appears as a small circle whose vorticity is of the opposite 
sign to the previous two. As shown before, the latter is generated as a result of the 
growth of perturbations on the core itself by the translative instability mechanism. 

(b)  Late stages of three-dimensional motion 
For 8.0 < t < 12.0, the flow field suffers a rapid transition to three-dimensional 

motion leading to an intensification of the streamwise vorticity in the braids. The total 
circulation of the streamwise vortices, Got = Slw,ldA in the plane z = 2.0, increases 
from Got@) = 2.617 to cOt(12) = 4.492. The streamwise vorticity grows under the 
action of the strong strain exerted by the large spanwise cores in the neighbourhood 
of the stagnation ‘lines’ which anchor the braids (Lasheras & Choi 1988). Meanwhile, 
the deformation of the core, which is attributed to the growth of the translative 
instability, changes the alignment of the vorticity from predominantly spanwise into 
spanwise and streamwise components. Although the maximum value of streamwise 
vorticity occurs within the braids, the streamwise eddies generated by the core 
deformation have higher total circulation. At t = 12.0, the middle row of streamwise 
vortices in figure 8(a)  accounts for 65% of the total circulation in the plane of the 
core. This is because the growth and maturation of the primary two-dimensional 
instability, which precede the three-dimensional motion, force the migration of the 
spanwise vorticity from the thinning braids into the core. 

The total streamwise circulation in the plane dividing the core, z = 6.6, used as a 
measure of the three-dimensional effects in the flow, is shown in figure 10. It confirms 
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FIQURE 7. (a) Contours of constant spanwise vorticity, wy, and ( b )  iso-scalar contours 
plotted in the plane y = 5.0. 

the early observation that three-dimensional effects are small during the linear stages 
of the two-dimensional instability and grow rapidly after rollup. The behaviour of 
the curve changes from an algebraic growth for t < 9, to an exponential growth 
between 9 < t < 13. At later stages, a nonlinear regime characterized by a drop in the 
rate of increase of the total circulation is observed. This is expected since the strain 
field induced by the spanwise eddy leads to continuous intensification of the 
streamwise vorticity. For t > 16.0, no qualitative changes in the structure of the 
vorticity and scalar fields is observed, an indication that the instabilities tend to 
saturate (Metcalfe et al. 1987). 

At late stages, the streamwise vortices induce a strong secondary motion. As 
previously indicated, this motion can be easily analysed in the braids of the eddy 
where scalar mushroom structures are generated. However, the scalar distribution is 
more complex in the core, where the flow is under the combined influence of spanwise 
and streamwise vortices. The top and bottom mushrooms, which forms due to the 
rollup of the braid vorticity and are identified in figure 8 ( b ) ,  originate in the braids 
and are then entrained towards the cores. Near the axis of the core, the scalar 
distribution is affected by the flow field induced by the three rows of alternating 
streamwise vortices shown schematically in figure 5. The superposition of the fields 
of these vortices, whose axes are deformed under the action of the translative 
instability, leads to the generation of W-shaped’ scalar structures. 

The spanwise vorticity contours at t = 12.0, although similar to those encountered 
in a two-dimensional flow, exhibit a more compact core than in two dimensions due 
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FIQURE 8. (a) Contours of constant streamwise vorticity, w,, and (b) iso-scalar contours 
plotted in the plane x = 6.6. 

to stretching along the axis of the core. The stretching of spanwise vorticity is 
accompanied by a non-uniform deformation of the cores at different spanwise 
locations. The corresponding variation of the spanwise vorticity is depicted in the 
last frames of figures 6 and 7. The core is shifted towards and in the direction of the 
bottom stream for +Au < y < A,, while it suffers an antisymmetric displacement for 
0 < y < $Au (see also figures 2 and 3). This confirms the results of the linear stability 
theory of perturbed vortex cores which predicts a ‘translative’ instability of the 
cores in the manner described above (Pierrehumbert & Widnall 1982). We also note 
that the point of maximum vorticity within the core, which moves in the direction 
opposite to that of the outer boundaries of the core, no longer coincides with its 
geometric centre. This configuration resembles that observed in the evolution of the 
eigenfunctions of the linear stability problem of vortex rings, which also predicts a 
similar behaviour for any locally curved vortex filament (Widnall & Tsai 1977). We 
recall that the most amplified mode of the translative instability mechanism is 
characterized by an eigenfunction which changes sign within the vorticity core. This 
property also arises in the linear stability of vortex rings as a necessary condition for 
eigenfunction instability. In both cases, the amplification of the instability forces the 
migration of the ‘inner’ core in the direction opposite to the motion of its outer 
boundaries. 
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FIQURE 9. (a) Contours of constant .streamwise vorticity, wz, and ( b )  iso-scalar contours 
plotted in the plane x = 2.0. 
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FIQURE 10. Evolution of the total streamwise vorticity, Jlo~~Jd.4, computed in 

the streamwise plane located at x = 6.6. 

This mechanism appears to be connected to convective currents within the core 
and not to uneven vorticity stretching. This is verified by inspecting the scalar 
distribution in the same cross-sections, which shows that the scalar field follows a 
similar redistribution and loses its symmetry. This motion leads to preferential 
entrainment of irrotational fluid from the free streams. The section of the core which 
is displaced upwards, 0 < y < $Au, entrains more fluid from the bottom stream, while 
the section which is pushed downwards consists mainly of the top-stream fluid. This 
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FIQURE 11.  Schematic illustration of the eddy. 

form of preferential entrainment resembles that reported experimentally (Bernal & 
Roshko 1986). 

The symmetry of the vorticity and scalar distributions is preserved at the spanwise 
mid-section of the domain, since, as predicted by the theory, the curvature of the 
core vanishes at  that location. Nevertheless, this plane is of interest since it intersects 
the streamwise vortex rod centred in the domain (see figures 2 and 3). This rod 
appears in the form of a ‘tongue’ of negative vorticity which extends through the 
braids to the top and bottom edges of neighbouring cores (figures 6a, t - 16.0). At 
this plane of zero curvature, the action of the translative instability is manifested by 
the presence of two vorticity maxima. A similar vorticity distribution is obtained in 
unstable vortex rings at azimuthal stations where the curvature of the axis of the 
core vanishes (Knio & Ghoniem 1988). In  the shear layer, these stations lie within the 
planes y = O,&, and A,, while, in the vortex ring, the local curvature vanishes 
whenever the curvature induced by the growth of azimuthal bending waves cancels 
that of the undisturbed vortex ring. The resemblance between the two cases has 
important implications for the implementation of numerical schemes and the 
modelling of the vorticity layer. The numerical study in Knio & Ghoniem (1990) 
shows that the dynamics within concentrated vortices may not be properly predicted 
unless a sufficiently large number of computational elements is used to discretize the 
vortex cores. As a result, the computations could have missed or spuriously predicted 
the evolution of the translative instability, had we chosen to simulate the vorticity 
layer by distributing the transport elements on a single material layer, or to model 
the layer as a thin vortex sheet, as in Ashurst & Meiburg (1988) and Inoue (1989). 

3.1.3. Entrainment enhancement 

The development of the three-dimensional instabilities promotes shear-layer 
entrainment (Knio & Ghoniem 1991). To quantify this effect, the shear layer 
entrainment is measured by introducing an ‘eddy size’ parameter, S, in two and 
three dimensions. In two dimensions, the eddy size is defined by measuring the region 
enclosed between the surfaces where the normalized scalar first deviates b 3 % from 
the corresponding free-stream value. This yields a local height of the eddy, Z,,(z) ,  
which, when integrated over the streamwise length of the domain, gives a mean eddy 
size, 

S,, = r.Z,,(z) dx. (10) 

According to this definition, the eddy consists of the union of the rotational fluid and 
the irrotational fluid trapped between the braids and the core (see figure 11). In  three 
dimensions, two similar definitions are considered. The first is obtained by measuring 



w 3 :  .- Cn 
h 2 -  a 
a w 

373 

* * I' 

* *  " - '  
* * * ,. 

* " A -  

* I , .  
" 1  

I , .  l,+:::::;:":.- 
. " " " "  

the height of the eddy at  each spanwise and streamwise location, Z,,(X, y ) ,  and then 
integrating over the spanwise and streamwise periodicity length to get an eddy size, 

J o  J o  

While this definition is a natural extension of that in two dimensions, the 
contribution of the irrotational fluid trapped by the mushroom structures is 
neglected in the averaging process. To account for this additional entrainment 
mechanism, we define a third measure, S;,, by 

where Z;,(z) = maxy (Z,,(Z, y ) ) .  
The eddy size is normalized by the spanwise and streamwise periodicity lengths in 

three-dimensional computations and by the streamwise periodicity length in two 
dimensions, so that the resulting values represent an average thickness of the scalar 
distribution. The entrainment enhancement is shown in figure 12 by comparing the 
eddy size for two- and three-dimensional computations. With the rollup of the layer, 
t - 8.0, entrainment curves start to grow with the curves in three dimensions 
acquiring a higher growth rate. The deviation in the behaviour of the two- and 3- 
dimensional solutions coincides with the three dimensional transition depicted in 
figure 11. Thus, the transition to three-dimensional motion is accompanied by an 
'entrainment transition'. By the end of the simulation, the total entrainment S;, 
increases by 75 % over its two-dimensional counterpart, while comparison of S;, and 
S,, indicates that the formation of the mushroom structures contributes significantly 
to entrainment enhancement. 

The eddy size parameters are also used to quantify the preferential entrainment of 
fluid at  various sections of the domain. This form of entrainment reverses itself every 
half spanwise wavelength so that the composition of the eddy does not favour either 
free stream. However, in the region 0 < y < +A,, preferential entrainment of lower- 
stream fluid is observed. Preferential entrainment may be estimated by subdividing 
the integrals in (10)-(12) over the regions defined by: s > sav, and s < sau, thus 
yielding: (S,,)+, (S3J, (A';,)+, and (SiD)-. A t  t = 16.0, the entrainment ratios in the 
area 0 < y < +Ay, (S,D)-/(S3D)+ = 1.787, and (A';D)-/(S&)+ = 3.487. These ratios are 
reversed in the area :Ay < y < A,, so that unit net entrainment ratios are obtained. 
The difference between the two ratios is a manifestation of the role of streamwise 
vortices in inducing preferential entrainment patterns (Bernal & Roshko 1986). 
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3.1.4. Discussion 
The results of the computations show that the evolution of the shear layer from a 

perturbed steady state using monochromatic three-dimensional disturbances consists 
of three stages. (i) In  the first stage, an essentially two-dimensional growth of the 
perturbations, in the form of linear amplification of the Kelvin-Helmholtz instability 
modes, is observed. During this phase, all three-dimensional activity is suppressed. 
This is followed by a nonlinear two-dimensional growth of the fundamental mode, 
leading to rollup and the formation of a concentrated spanwise eddy core. (ii) The 
rollup is accompanied by a rapid growth of the three-dimensional modes, in the form 
of a deformation of the spanwise eddy and an instability in the braids. (iii) The three- 
dimensional modes undergo a nonlinear growth which results in the redistribution of 
the streamwise vorticity into vortex rods and in the generation of the scalar 
mushroom structures. 

While the two-dimensional instability is relatively simple to describe, the three- 
dimensional motion in the cores and braids of the vortex structures are more 
involved. The stability of the rolled layer was examined by Pierrehumbert & Widnall 
(1982) using a periodic array of Stuart vortices. They found that this array was 
linearly unstable to a mode they called the translative instability, which leads to a 
deformation of the spanwise eddies according to the strain field induced by the eddy 
and by its image vortices. The instability appearing in the braids was studied in the 
work of Corcos & Lin (1984), who proved the fundamental nature of the instability 
of a strained streamwise vorticity and showed that the growth of this mode is 
suppressed during the amplification of the two-dimensional instability. The 
translative instability is fundamentally different from the Corcos mechanism since 
the braids of the spanwise vortices, observed in the case of a shear layer, are not well 
represented by the Stuart vortices. Thus, the two instabilities differ in form. The 
translative mode is an instability of the spanwise cores, that is of large concentrated 
vortices subject to strain normal to  their axes, while the Corcos mechanism predicts 
the instability of streamwise vorticity when subjected to strong extensional strain. 

The absence of braids does not preclude the formation of vortex rods by the strain 
field which may cause the vorticity within the core to  migrate outwards preferentially 
(Grinstein et al. 1989). On the other hand, the ability of the streamwise vortex rods 
generated by the Corcos mechanism to impart a core deformation similar in shape to 
that obtained by the development of the translative instability (Corcos & Lin 1984) 
complicates the task of separating the role of these two instabilities. This difficulty 
has led researchers (Ashurst & Meiburg 1988; Lasheras & Choi 1988) to emphasize 
the importance of a nonlinear interaction between the spanwise cores and the 
streamwise vortices. Our results, however, indicate that the translative instability 
within the cores grows simultaneously with the intensification of the rods. Since, as 
previously mentioned, a mild straining of the streamwise vorticity is observed prior 
to the rollup of the spanwise vorticity, and since the translative instability is a linear 
instability mechanism, the importance of such an interaction should be played down. 

The formation of the streamwise vortex rods leaves its mark on the flow in the 
form of scalar mushroom structures. The translative instability, on the other hand, 
is manifested by an asymmetric spanwise vorticity distribution within the core, 
which resembles that predicted by the growth of unstable eigenfunctions of the 
Widnall instability of vortex rings (Widnall & Tsai 1977). The alternating preferential 
entrainment patterns which result from the amplification of the instability mode 
compound the difficulty in experimentally visualizing the scalar structures 
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mentioned by Corcos & Lin (1984), since uniform-density spatially developing shear 
layers entrain more fluid from the faster stream (Dimotakis 1986). Despite these 
difficulties, a deformation consistent with the development of the translativc 
instability was inferred by Jiminez (1983) and by Bernal & Roshko (1986) based on 
spanwise correlations of velocity fluctuations. 

The analysis of the evolving vorticity structures using numerical simulation makes 
a valuable contribution since direct and detailed measurements of the vorticity field 
are usually not possible or extremely cumbersome. Such difficulties are primarily 
encountered in experimental studies in which velocity correlations (Browand & 
Troutt 1980; Jiminez 1983; Wygnansky et al. 1979), passive scalar or dye techniques 
(Bernal & Roshko 1986; Jiminez et al. 1985), or low-heat-release chemical reactions 
(Breidenthal 1981 ; Lasheras et al. 1986; Lasheras & Choi 1988) have been used as 
substitute tools for deducing the topology of the vorticity field. Our results suggest 
that such efforts should be conducted with great care, because a large number of 
mechanisms contributes to their formation. The computed results reveal some of the 
difficulties arising from the lack of an accurate knowledge of the vorticity field. In 
particular, it is shown that the deformation of material surfaces, visualized for 
instance by injecting marker particles in one of the fluid streams, may not be 
sufficient to fully determine the corresponding vortical structures, especially if one 
cannot a priori locate a given material surface with respect to the layer of highest 
spanwise vorticity. The rapid variation of the strain field around the latter causes 
substantially different deformations of adjacent layers, thus preventing immediate 
correlations with the underlying vortical structures. On the other hand, the 
visualization of vorticity structures by means of the products of a unity- 
stoichiometry, low-heat-release chemical reaction may remove some of these 
difficulties, since, as observed by Knio & Choniem (1992), the products of reaction are 
always entrained into zones of high vorticity. 

3.2. Variable-density shear layer 
Density variation, characterized by a density ratio of the free streams, plays an 
important role in the evolution of heterogeneous shear layers created by the merging 
two streams of unequal density and velocity. It has been observed that a non-unity 
density ratio alters the spatial growth of the layer and influences the entrainment 
induced by the vortical structures embedded therein, even when gravity effects are 
weak (Brown & Roshko 1974; Ho & Huerre 1984; Dimotakis 1989). In chemically 
reacting flows, density variation is generated by heat release which leads to the 
generation of zones of high temperature and low density. Here too, the presence of 
two or more zones of different density is found to affect the stability and 
development of the flow. This effect depends on both the details of the density and 
vorticity distributions, as i t  may constitute a stabilizing or a destablizing mechanism 
(Riley & McMurtry 1989; McMurtry, Riley & Metcalfe 1989; Ghoniem & Krishnan 
1988). 

In this section, the effect of weak density variation on three-dimensional 
instability is investigated by computing the onset of three-dimensional motion in an 
incompressible, variable-density shear layer. While this study is ultimately 
motivated by the desire to predict high-heat-release reactions in vortical flows, the 
simplified model allows us to focus on the dynamic effects of baroclinic vorticity. In 
a three-dimensional flow, this stepwise approach is important because of the presence 
of a vorticity stretching term. One case with small density ratio, = 2, is 
considered. To avoid a re-initialization of the scalar (density) gradient field, we use 
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the same discrete scalar gradient values as the previous case but set = 1.5. 
Therefore, in a high-density top free stream, kax = 2, and in the low-density bottom 
free stream, kin = 1. The same initial perturbation used in the previous case is 
applied, and the computations are performed to observe the growth of both the two- 
and three-dimensional instabilities. 

The linear theory of variable-density shear layers (Ghoniem & Krishnan 1989 ; 
Krishnan 1989) shows that the wavelength of the most amplified mode of the two- 
dimensional instability depends weakly on, and the growth rate are almost 
independent of, the density ratio, while its phase velocity varies strongly with the 
density ratio. Unlike the uniform-density case, the most amplified mode in the 
variable-density layer evolves as a travelling wave moving in the direction of the 
high-density stream with phase speed increasing with the density ratio. This effect 
has been used to explain the difference in growth rates in variable-density, spatially 
evolving layers (Dimotakis 1989,1986 ; Brown & Roshko 1974; Ghoniem & Krishnan 
1989). For the density and vorticity profiles used in the simulation, and a density 
ratio of 2, the linear stability theory predicts a phase speed c = 0.17. We note that 
the stability analysis performed by Ghoniem & Krishnan (1989) differs slightly from 
the earlier investigation of Maslowe & Kelly (1971), who showed that, in the limit of 
vanishing Richardson number, density stratification tends to stabilize a temporal 
shear layer. The differing conclusions are due to the assumed density profiles. The 
analysis of Maslowe & Kelly, which was primarily concerned with atmospheric and 
oceanic flows, assumed an exponentially varying density distribution. This 
distribution is contrasted with the error-function profile which is more representative 
of high-speed shear flows, where small Richardson numbers are more frequently 
encountered. 

The effect of the density variation on the linear stability of three-dimensional 
perturbations is not known at  present. Three-dimensional instability of variable- 
density shear layers is not a simple extension of that of the uniform-density case since 
one must deal with the added difficulty of formulating a steady initial condition of 
the stability problem. In the uniform-density case, Stuart vortices were used to 
approximate the flow of the rolled layer (Pierrehumbert & Widnall 1982). The 
existence of similar solutions in the variable-density case is complicated by the 
convective motion of the vortices due to the baroclinic generation of vorticity, as 
observed in two-dimensional simulations (Ghoniem & Krishnan 1989). As a result, 
and because we have approached the study of three-dimensional temporal layers 
with the intention of investigating deviations from the two-dimensional case, we 
were content with keeping the same spanwise periodicity length used in the uniform- 
density case. This prompted us to select a small value of the density ratio, so that 
bomparisons with the preceding results are justified. 

3.2.1. Deformation of material surfaces 
Figure 13 shows the evolution of a material surface initially lying in the planes 

z = 0. At early stages, the motion of the middle layer bears strong resemblance to its 
counterpart in the uniform-density case (figure 2) .  This similarity is expected, and in 
agreement with the results of the linear stability theory which predicts almost 
identical growth rates of the two-dimensional perturbation. The first manifestation of 
the convective motion of the instability wave is observed once the rollup of the layer 
is completed and a well-defined eddy core is formed ( t  > 8). During this period, the 
three-dimensional perturbation is amplified causing the core to deform in the way 
similar to that predicted by the translative instability of uniform-density cores. 
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t = 4.0 
xv 

t = 8.0 
xv 

xv t = 12.0 

t = 16.0 
xv 

FIGURE 13. Three-dimensional perspective view of the surface p’ = 0, initially lying in the plane 
z = 0 for the case of a variable-density shear layer. The plots were generated from the point of view 
of an observer located at (48,24,48). 

t = 4.0 
Material z 

layer location A N 

1 -1.32 1.03 1.00 
2 -0.66 1.04 1.00 
3 0 1.04 1.00 
4 0.66 1.04 1.00 
5 1.32 1.03 1.00 

t = 8.0 

A N 

1.12 1.30 
1.22 1.40 
1.43 1.55 
1.21 1.41 
1.12 1.28 

t = 16.0 t = 12.0 

A N A N 

1.70 2.00 3.47 4.75 
2.35 2.84 4.74 7.75 
2.71 3.65 5.48 10.11 
2.22 2.93 4.78 8.63 
1.57 1.71 3.11 3.80 

TABLE 2. Normalized surface area, A ,  and number of elements, N ,  for the individual material layers 

However, the (deformed) axis of the core no longer coincides with the streamwise 
mid-section of the domain, but shifts in the positive streamwise s-direction, i.e. in the 
direction of the high-density top stream. The braids suffer a deformation whose 
shape is of the same type as observed in the uniform-density case. 

The total surface area of the material surfaces and the number of transport 
elements, shown in table 2, exhibit the same trends as described in the uniform- 
density case. However, the motions of surfaces lying on the top and bottom sides of 
the middle layer are no longer similar because of the asymmetry of the flow field. 
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FIGURE 14. Intersection of the Lagrangian mesh at t = 16.0 with the planes ( a )  y = 3.3, 
( b )  y = 1,6, (c) x = 9.3, and ( d )  x = 2.0. 

Prior to the maturation of the three-dimensional instability, t < 12.0, the material 
surfaces lying on the low-density side are deformed a t  higher rate than those located 
in the heavier fluid side of the layer. At later stages, this trend is reversed. This 
asymmetric straining of the surfaces is related to the asymmetry of the spanwise 
vortices whose rotation resembles the eccentric spinning of egg-shaped cores. 

While the uneven deformation of the braids is readily verified a t  later stages, the 
asymmetric stretching of streamwise vorticity affects the entrainment patterns in 
the neighbourhood of the spanwise cores (Brown & Roshko 1974; Dimotakis 1986, 
1989; Ghoniem & Krishnan 1989). However, the motion of the Lagrangian mesh 
cannot be used to deduce this effect because the vorticity lines in a variable-density 
flow cannot be directly identified with material lines, and the deformation of material 
surfaces is not sufficient to completely determine the fate of the vorticity. In  fact, 
detailed examination of the motion of the material surfaces only indicates that, in 
the braids, streamwise vorticity reorganizes into rods, leading to the formation of the 
mushroom structures that cover the eddy cores, and that the spanwise cores 
propagate in an asymmetric flow field. 

Signs of the influence of the baroclinic vorticity and the associated asymmetry of 
the strain field on the evolution of the three-dimensional perturbation appear in the 
cross-sections through the material surfaces. These sections, shown a t  t = 16.0 in 
figure 14, are generated on a streamwise section translated in the direction of the 
heavy stream to x = 9.3 in order account for the convective motion of the eddy. The 
mean streamwise location of the core is first estimated by translating the plane 
xi = 6.6 by ct, c being the phase speed of the two-dimensional Kelvin-Helmholtz wave 
obtained from the linear theory. This estimate is then refined by considering the 
neighbouring planes on both sides of the plane x = x;+ct .  It is found that the mean 
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FIGURE 15. Contours of spanwise vorticity, wy, (left) and density (right) plotted in 
the plane y = 3.3. 

streamwise location of the eddy shifts from x = 6.6 at t = 0, to x = 7.3, 8.0, 8.6, and 
9.3 at t = 4.0, 8.0, 12.0, and 16.0 respectively. Thus, the convective speed of the eddy 
is closely approximated by c even in the nonlinear stages (Ghoniem & Krishnan 
1989). For the remaining sections, we still use the planes y = 3.3 and 1.6 to  visualize 
the variations along the span of the layer, and the plane x = 2.0 to  obtain a 
representative streamwise section of the braids. 

The large-scale features of the instability in the variable-density flow can be 
approximated by those found in the previous case simply by accounting for the 
convective motion of the eddy. However, cross-sections through the core reveal that  
the mushrooms entrained on the top and bottom of the core are not similar. The top 
mushroom, lying on the side of the high-density fluid, is larger, more rounded, and 
less developed that its counterpart on the bottom side of the eddy. The concentration 
of computational elements, visualized by darker areas on the plots, is higher in the 
lower mushroom especially near the axes of the streamwise vortex rods. Thus, 
streamwise vorticity is higher for the bottom vortex rods, leading us to expect higher 
rates of spinning around their axes, and a significant departure from the entrainment 
patterns observed in the previous case. 

3.2.2. Vorticity and density $e~?ds 

The spanwise structure of the layer is shown in terms of the spanwise vorticity and 
density contours, plotted in figures 15 and 16 in the spanwise planes y = 3.3 and 5.0, 
respectively. The streamwise structure of the layer is examined by considering cross- 
sections through the core and the braid. The core cross-sections, figure 17, are 
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FIGURE 16. Contours of spanwise vorticity, wy (left) and density (right) plotted in 
the plane y = 5.0. 

generated in the (y,z)-planes coinciding with the mean streamwise location of the 
eddy. We use the fixed streamwise plane x = 2.0 to cut through the braids, the results 
being shown in figure 18, a t  t = 12.0 and 16.0, i.e. following the growth of the three- 
dimensional modes. 

A qualitative similarity between the uniform- and variable-density flow in terms 
of the types and shapes of vortical structures that are formed as a result of the 
evolution of the various instabilities is noticeable. The variable-density layer can be 
characterized by the same stages of evolution as the uniform-density layer: (i) an 
early growth of the Kelvin-Helmholtz instability during which the layer remains 
essentially two-dimensional ; (ii) a nonlinear evolution accompanied by the formation 
of a spanwise core as a coherent eddy, the onset of the three-dimensional undulation 
along its axis, and the generation of streamwise vorticity ; and (iii) a maturation of 
the translative instability, the redistribution of the streamwise vorticity into vortex 
rods, and the formation of scalar mushroom structures. The differences between the 
two cases, which arise owing to the baroclinic generation of vorticity, are summarized 
in the following. 

(i) The evolution of the Kelvin-Helmholtz mode is modified by a finite phase 
speed of the waves in the direction of the high-density stream. The motion of the 
waves is uniform in all spanwise stations, and persists into the nonlinear stages. 

(ii) The vorticity field loses its symmetry as a result of the vorticity generated by 
the baroclinic torque. The loss of symmetry is not restricted to any particular 
spanwise plane, and is not due to the amplification of three-dimensional modes as it 
is also observed in two-dimensional simulations Ghoniem & Krishnan 1989). 
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FIGURE 17. FIGURE 18. 

FIGURE 17. Contours of streamwise vorticity, w, (left) and density (right) plotted at t = 12.0, 
and 16.0, in the planes z = 8.6, and z = 9.3 respectively. 
FIGURE 18. Contours of streamwise vorticity, w, (left) and density (right) plotted in the plane 
x = 2.0. 

(iii) The loss of symmetry affects the streamwise vorticity via its asymmetric 
strain field. For t < 12.0, the top layer of streamwise vortices, lying on the side of the 
high-density stream, is considerably weaker than its counterpart on the bottom side, 
while the trend is reversed a t  later stages. At t = 12.0, &op/Got = 0.536, and increases 
to qop/&ot = 1.12 a t  t = 16.0. Thus, the strength of the streamwise vortices changes 
on both sides of the eddy in accordance with the deformation of material surfaces. 
This implies that, for 12.0 < t < 16.0, the asymmetric straining of streamwise 
vorticity leads to the establishment of spanwise entrainment patterns which are 
biased towards the high-density side. This bias is due to the difference in strength of 
the streamwise rods wrapped on opposite sides of the spanwise core, and opposes the 
effect of the streamwise two-dimensional entrainment currents which favour low- 
density fluid. 

(iv) The loss of symmetry is accompanied by a net asymmetric entrainment of the 
low-density fluid. We distinguish between the preferential entrainment associated 
with the growth of three-dimensional modes, and the entrainment asymmetry due to 
the baroclinic generation of vorticity. The asymmetric entrainment of the low- 
density fluid combines with the preferential entrainment of low-density fluid in 

13-2 
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FIGURE 19. Contours of the spanwise component of the baroclinic torque, rY,  plotted in the 
plane (a )  y = 3.3 and ( b )  y = 5.0. 

0 < y < +A,, produces an asymmetric distribution at the spanwise mid-section 
of the domain, and counteracts the effect of the three-dimensional instabilities in 
+A, < y < A,. At t = 16.0, the entrainment ratios, ( A S ~ ~ ) - / ( S ~ ~ ) +  = 2.541, and 
(SiD)-/(SiD)+ = 4.458 in the area 0 -= y < +A,, while the net entrainment ratios, 
(IS~~)-/S~,,)+ = 1.245, and (SiD)-/(SiD)+ = 1.140. Thus, the spanwise entrainment 
patterns induced by the streamwise vortex rods lead to a reduction of the asymmetry 
in the entrainment ratio. 

3.2.3. Baroclinic vorticity 
In order to isolate the effects of the density variation from those associated with 

vortex stretching, the distribution of the baroclinic torque is used. Figure 19 shows 
the spanwise component of the baroclinic torque, ry, in the planes y = 3.3 and 5.0, 
while the streamwise component r,, is shown in figure 20 for the core and braid 
sections. At early stages, t < 8.0, the spanwise component of the baroclinic torque is 
concentrated in two zones of opposite sign. The initial vorticity of the layer is 
depleted in the left-hand side of the domain and enhanced in the remaining part. 
Thus, baroclinic vorticity imparts an asymmetry to  the vorticity distribution such 
that the part of the layer displaced towards the high-density fluid is weakened, while 
that  pushed in the direction of the low-density stream is intensified. As suggested in 
Ghoniem & Krishnan (1989), this asymmetry may be used to  explain the origin of the 
motion of the Kelvin-Helmholtz mode. 
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t = 8.0 t = 16.0 t = 8.0 t = 16.0 
FIGURE 20. Contours of the streamwise component of the baroclinic torque, T,, plotted at 

t = 8.0 and 16.0, in (y, %)-planes given by (a) 2 = 8.0 and 9.3; and ( b )  x = 2.0. 

Reduction of spanwise vorticity on the high-density side of the layer, and its 
enhancement on the low-density side is responsible for the observed difference in the 
strength of the streamwise vortices between the top and bottom rows of the core. 
As shown in figure 20, the streamwise component of the baroclinic term is extremely 
weak during the linear stages of the primary instability. Therefore, the asymmetry 
in the streamwise vorticity distribution must be due to the uneven tilting and 
stretching of layers of varying strengths so that density variation effects are 
primarily felt through changes in the spanwise vorticity . 

A t  later stages, however, baroclinic torques becomes strong enough to directly 
affect the evolution of the streamwise vorticity. Density variation does not lead to 
a net intensification or weakening of the streamwise vortices in the braids since the 
baroclinic term changes sign within each streamwise eddy. Nevertheless, the 
baroclinic term is distributed in such a way as to weaken the top parts of the 
streamwise eddies and to strengthen their bottom parts, leading to a downward drift 
of the vortex rods. On the other hand, in the core, baroclinic torques contribute to 
the asymmetry between the top and bottom rows of streamwise vortices. While the 
middle row of vortices is affected in a similar way as that observed in the braids, 
figure 20 indicates that baroclinic torques tend to strengthen the vorticity of the 
bottom row at the expense of the top row. 

Thus, density variation plays two different roles in the development of the three- 
dimensional form of the layer. At  the early stages, i t  generates an asymmetric strain 
field by imparting a convective motion to the core. At  the later stages, i t  
redistributes the vorticity within the core. The development of the instability modes 
in the variable-density shear layer highlights the importance of the asymmetry of the 
flow and strain fields. In the interpretation of the origin of the complicated structures 
associated with the three-dimensional effects, the influence of strain and density 
gradient, which are respectively taken into account in the equation of motion 
through the vorticity stretching and baroclinic production terms, may be hard to 
distinguish in the results. To facilitate this task, we consider the case of a uniform- 
density shear layer with an asymmetric vorticity distribution at t = 0, and postpone 
further discussion until the results are analysed. 
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t = 4.0 xv t = 12.0 

FIGURE 21. Three dimensional perspective view of the surface s = 0, initially lying in the plane 
z = 0 for the shear layer with an initially asymmetric vorticity. The plots were generated from the 
point of view of an observer located a t  (48,24,48). 

3.3. Uniform-density asymmetric shear layer 
Shear layers with asymmetric vorticity profiles are frequently encountered. 
Typically, these layers are formed following the merging, downstream of the splitter 
plates, of boundary layers of unequal thicknesses and opposite sign of vorticity. The 
velocity profile associated with the asymmetric vorticity distribution thus produced 
can be modelled as the superposition of a symmetric velocity profile induced by an 
idealized symmetric vorticity distribution, and a wake component biased towards 
the low-velocity stream. As shown by Koochesfahani & Frieler (1989), the wake 
component becomes important when the density of the slow stream is much larger 
than that of the fast stream. I n  such instances, linear stability analysis shows that 
the early development of the layer is dominated by the wake mode whose 
amplification rate is higher than that of the shear-layer mode. I n  the remaining cases, 
the shear-layer mode is dominant, and leads to the familiar rollup of the 
Kelvin-Helmholtz waves. 

While the wake component might be neglected in two-dimensional models, results 
of Ashurst & Meiburg (1988) have shown that the detail of the vorticity distribution 
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FIGURE 22. Intersection of the Lagrangian mesh at t = 16.0 with the planes defined by 
( a )  y = 3.3, ( b )  y = 1.6, (c) z = 6.6, and (d )  x = 2.0. 

t = 4.0 t = 8.0 t = 12.0 t = 16.0 
Material z 

layer location A N A N A N A N 

1 -1.32 1.03 1.00 1.14 1.20 1.72 1.69 3.54 4.16 
2 -0.66 1.04 1.00 1.24 1.33 2.40 2.54 5.31 8.55 
3 0 1.04 1.00 1.44 1.44 2.78 3.51 5.87 9.95 
4 0.66 1.04 1.00 1.22 1.31 2.36 2.48 5.01 7.35 
5 1.32 1.03 1.00 1.11 1.15 1.56 1.73 3.38 3.91 

TABLE 3. Normalized surface area, A ,  and number of elements, N ,  for the individual material layers 

plays an important role in the development of three-dimensional instability modes. 
Using two vorticity layers of opposite sign, they predicted an asymmetric spacing of 
the streamwise vortex rods similar to that experimentally observed (Lasheras & Choi 
1988). However, this approach is complicated by the difficulty in specifying the 
initial strength and separation of the vorticity layers. In fact, the initial separation 
of the individual vorticity layers is not uniquely determined in that model, and large 
separation distances may lead to the independent rollup of each layer, a behaviour 
that is not obtained in shear layers. 

In our study, consideration of shear layers with asymmetric vorticity profiles is 
motivated by the results of the variable-density layer. In  particular, the numerical 
experiment is designed to mimic the early effects of density variation which were 
shown to promote the spanwise vorticity of the low-density stream at the expense of 
that on the high-density side through asymmetric strain. This imitation is obtained 
by perturbing the second-order Gaussian vorticity profile to yield the asymmetric 
vorticity distribution shown by a broken line in figure 1. A single vorticity layer in 
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FIGURE 23. Spanwise vorticity, wy, (left) and scalar contours (right) plotted in 
the plane y = 3.3. 

which the velocity increases monotonically from one stream to the other is 
considered. The scalar is assumed passive, and its initial profile is the same as that 
used in $3.1. We keep the same dimensions and boundary conditions, and apply the 
same perturbation at the start of the computations. Since the deviation from the 
symmetric Gaussian profile is small, we expect similar growth characteristics of the 
two-dimensional component of the perturbation, although its wavelength may not 
correspond to that of the most amplified Kelvin-Helmholtz mode. 

3.3.1. Deformation of material surfaces 
Perspective views of the material surface initially lying in the plane z = 0, shown 

in figure 21, exhibit qualitative similarity to that of the first case and hence a detailed 
analysis of the Lagrangian motion is omitted. Our discussion will be restricted to the 
features by which the asymmetric layer may be identified. The deformation of the 
material layers is asymmetric with respect to the surface initially a t  z = 0, as 
indicated in table 3. This development resembles that observed in the variable- 
density case where baroclinic vorticity generation produces a similar asymmetric 
strain field. Despite this similarity, the two cases can be distinguished by the fact 
that, in the asymmetric uniform-density layer, the core does not exhibit any 
convective motion, The cross-sections of the material surfaces, plotted in figure 22, 
show that the asymmetry is primarily exhibited in the core where the top and 
bottom mushrooms are distinguishable. However, unlike the previous case, there is 
no indication that they have different strengths. 
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FIGXJRE 24. Spanwise vorticity, wy (left) and scalar contours (right) plotted in the plane y = 5.0. 

(4 (b) 

t = 12.0 t = 16.0 
FIQURE 25. Streamwise vorticity, wy (left) and scalar contours (right) plotted in 

the plane z = 6.6. 

3.3.2. Vorticity and scalar distribution 
Figures 23-26 show scalar and vorticity contours plotted in the nonlinear stages 

of evolution of the flow, t = 12.0 and 16.0. The spanwise sections show that some but 
not all the effects associated with density variation exist in this case. While the 
convective motion could not be captured, the vorticity and scalar distributions 
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(4 (b)  

t = 12.0 t = i6.0 
FIGURE 26. Streamwise vorticity, oy (left) and scalar contours (right) plotted in 

the plane x = 2.0. 

exhibit weak asymmetry a t  all spanwise cuts, and the rotation of the core resembles 
the eccentric rotation of an oval-shaped body. Asymmetric entrainment patterns, 
whereby more fluid from the bottom stream reaches the core, are also established. At 
t = 16.0, the composition of the eddy slightly favours bottom-layer fluid, as the net 
entrainment ratios admit small deviations from unity, ( A S ~ ~ ) - / ( A S ~ ~ ) +  = 1.026, and 
(SkD)-/(SkD)+ = 1.037. This corroborates our discussion of the motion of the material 
surfaces, whose deformation is found to be more severe in the bottom stream. On the 
other hand, the similarity between the asymmetric and variable-density layers is 
restricted to  the fact that these layers can be identified by larger spanwise vorticity 
values. 

The spinning of the asymmetric spanwise eddy causes the generation of streamwise 
vortex rods of different strengths as they approach the core. Unlike the variable- 
density case, the vortex rods on the bottom side are intensified at  a lower rate in the 
early stages, t < 12.0, and this effect is reversed a t  the later stages. At t = 12.0, the 
ratio of the circulation of the two streamwise vortices is qop/rbot = 1.313, and 
decreases to qop/rbot = 0.982 a t  t = 16.0. This asymmetry occurs mainly as a result 
of the difference in shape and size of the streamwise rods as the maximum vorticity 
values in both remain close. A simplified model clarifying the origin of the difference 
in strengths between the streamwise rods can be constructed by noting that the 
stretching of the streamwise vorticity occurs along the streamwise boundaries of the 
domain where the braids are anchored and pulled towards the core of the eddy. In 
the braids, the strain is weakly dependent on the detail of the distribution within the 
core. In fact, the strain in the braids may be approximated by concentrating the 
spanwise vorticity of the core along its centre. Thus, the asymmetry of the vorticity 
distribution of the spanwise core and of its induced flow and strain fields, are not 
expected to play a major role in the production of streamwise vorticity. The observed 
asymmetry becomes essentially a consequence of the eccentric spinning of the 
spanwise cores. 

I n  the variable-density layer, the above description is modified by the baroclinic 
production of vorticity. The streamwise component of the baroclinic torque, T,, is 
small in the braids, so that the production of streamwise vorticity there is dominated 
by strain and the contribution of the baroclinic torque to the strength of the 
streamwise vortices only appears as a modulation of the local vorticity values. On the 
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other hand, 7, increases significantly as we approach the core. Focusing on the later 
stages of the flow, this observation is justified by realizing that fluid acceleration, 
which controls the production of baroclinic vorticity, becomes dominated by the 
convective acceleration. In turn, the convective acceleration must be larger in 
regions of higher curvature. Therefore, in the variable-density layer, as the 
streamwise vortices approach the core, their strengths are affected by the baroclinic 
source term which is shown to strengthen (weaken) the streamwise vorticity of the 
vortex rods lying on the low-density (high-density) side. 

Our numerical results have shown that three mechanisms can lead to symmetry 
loss in three-dimensional temporal shear layers. The first is associated with the 
growth of the translative instability which leads to a preferential entrainment 
pattern reversing itself every half spanwise wavelength of the instability. The second 
is caused by an initially asymmetric vorticity distribution which induces asymmetric 
entrainment currents favouring the free stream having higher spanwise vorticity 
values. Finally, baroclinic vorticity generation plays an important role in the 
formation of asymmetric structures by imparting a convective motion on the cores 
and redistributing the vorticity within the cores. These mechanisms should be 
distinguished from similar effects occurring in two- and three-dimensional spatially 
developing layers, in which individual mechanisms may be hard to isolate since 
asymmetric entrainment favouring the high-speed stream is observed before the 
transition to three-dimensional motion, and the location of vortex amalgamation, 
which lead to the formation of composite structures of even higher complexity, is not 
easily predicted (Dimotakis 1986). 

The use of asymmetric vorticity distribution, with a strong negative component, 
has been suggested by Ashurst & Meiburg (1988) as a means of simulating the effect 
of the velocity ratio. Their computations were able to capture the asymmetric 
spacing of the streamwise vortices, observed experimentally by Lasheras & Choi 
(1988). This asymmetric spacing was not observed in our computations which did not 
include a negative initial vorticity component. Thus, we conclude that the presence 
of negative vorticity alone cannot be responsible for this effect and the asymmetric 
spacing of the streamwise vortices is not a property of the ‘primary’ three- 
dimensional structure. However, the development described by Ashurst & Meiburg 
(1988) could occur during the merging of the distorted spanwise eddies. In  view of the 
results of Metcalfe et al. (1987), who showed that in the absence of pairing, both two- 
and three-dimensional instabilities tend to saturate, the suggestion that the 
asymmetric spacing is a product of a higher-order instability could be justified. This 
interpretation is consistent with the experimental findings of Bernal & Roshko 
(1986), and with the numerical simulations of Grinstein et al. (1989), who observed 
that an asymmetric reorganization of the streamwise vortices occurs after the 
merging of the distorted spanwise eddies. 

4. Conclusions 
The transport element method was applied to study the evolution of temporal, 

doubly periodic, uniform- and variable-density shear layers. The numerical schemes 
are Lagrangian and adaptive. They are based on tracking the vorticity, scalar and 
scalar gradients, discretized using a fmite number of computational elements. Three 
cases are considered : (i) a uniform-density vorticity layer with symmetric vorticity 
profile, (ii) a variable-density vorticity layer, and (iii) a uniform-density asymmetric 
layer. In  the uniform-density case, we take advantage of Kelvin’s circulation 



390 0. M .  Knio and A .  F .  Ghoniem 

theorem in order to save computational effort, while the vorticity transport equation 
is used when the baroclinic source term is present. Thus, the vortex stretching is 
implicitly taken into account in the first case, while direct evaluation of the vorticity 
stretching and baroclinic source terms is performed in the second. 

Starting from equal ' small-amplitude ' two- and three-dimensional perturbations, 
the evolution of the vorticity layer first exhibits a two-dimensional regime which is 
characterized by the growth and rollup of the Kelvin-Helmholtz mode. Following 
this stage, three-dimensional perturbations are rapidly amplified. In  all cases, and 
consistent with previous results, two types of three-dimensional instability are 
observed: an instability in the braids which leads to  the formation of streamwise 
vortex rods and scalar mushroom structures, and a core instability which causes an 
uneven deformation of the spanwise eddies. The instability in the braids is associated 
with the severe stretching of the vortex lines whose extension in the streamwise 
direction exceeds the separation distance between neighbouring spanwise eddies. The 
streamwise vortex rods are continuously wrapped around the deformed spanwise 
cores leading to the intensification of the streamwise and spanwise components of 
vorticity and to the generation of complex vortex structures. While the amplitude of 
instability of the spanwise eddies does not reach such large values, it is still found to 
play an important role in the evolution of the flow field. 

A detailed visualization of the vorticity and scalar fields and of the motion of 
material surfaces was performed. The study focuses on the manifestation of three- 
dimensional instabilities in vorticity layers. The three-dimensional instability in a 
vorticity layer with initially symmetric vorticity and scalar profiles exhibits 
asymmetric vorticity and scalar distributions at different spanwise locations. These 
forms of asymmetry, which reverse themselves every one-half spanwise periodicity 
length, are linked to the development of the braids and translative instabilities. 
Similar entrainment currents are observed in a uniform-density asymmetric vorticity 
layer, where the asymmetry of the flow field leads to a preferential entrainment of 
irrotational fluid from the stream initially having higher spanwise vorticity values. 
I n  this case, the effect of the asymmetric vorticity distribution combines with that 
of the three-dimensional instability, whose development is not significantly altered 
from the previous case, resulting in a net departure from a unity entrainment ratio. 
The variable-density layer is identified by a finite convective speed of the eddies in 
the direction of the high-density fluid stream and by an asymmetric entrainment 
pattern favouring the low-density stream. Baroclinic torques affect the development 
of the three-dimensional modes via uneven intensification or weakening of the 
streamwise vorticity. 

Special attention was paid to  the evolution of the unstable modes, and on their 
roles in reorganizing the flow field. We were thus content to  observe unstable modes 
given by a single spanwise wavelength, which was chosen close to the most amplified 
mode of the linear stability theory. We leave to a subsequent study the task of trying 
to  determine the characteristics of the processes which lead to  the wavelength 
selection of the three-dimensional modes. Moreover, we have restricted our study to 
the formation and maturation of the primary three-dimensional structures. We have 
thus omitted the pairing interactions between these structures and their role in the 
mixing transition and growth of the layer. These computations are currently being 
considered. 
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